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Abstract—Unmanned aerial vehicles (UAVs) are expected to
be a key component of the next-generation wireless systems.
Due to their deployment flexibility, UAVs are being considered
as an efficient solution for collecting information data from
ground nodes and transmitting it wirelessly to the network.
In this paper, a UAV-assisted wireless network is studied, in
which energy-constrained ground nodes are deployed to observe
different physical processes. In this network, a UAV that has
a time constraint for its operation due to its limited battery,
moves towards the ground nodes to receive status update packets
about their observed processes. The flight trajectory of the UAV
and scheduling of status update packets are jointly optimized
with the objective of achieving the minimum weighted sum for
the age-of-information (AoI) values of different processes at the
UAV, referred to as weighted sum-AoI. The problem is modeled
as a finite-horizon Markov decision process (MDP) with finite
state and action spaces. Since the state space is extremely large,
a deep reinforcement learning (RL) algorithm is proposed to
obtain the optimal policy that minimizes the weighted sum-AoI,
referred to as the age-optimal policy. Several simulation scenarios
are considered to showcase the convergence of the proposed
deep RL algorithm. Moreover, the results also demonstrate that
the proposed deep RL approach can significantly improve the
achievable sum-AoI per process compared to the baseline policies,
such as the distance-based and random walk policies. The impact
of various system design parameters on the optimal achievable
sum-AoI per process is also shown through extensive simulations.

I. INTRODUCTION

Owing to their deployment flexibility, unmanned aerial

vehicles (UAVs) are expected to be a key component of future

wireless networks. The use of UAVs as flying base stations,

that collect/transmit information from/to ground nodes (e.g.,

users, sensors or Internet of Things (IoT) devices), has recently

attracted significant attention [1]–[10]. Meanwhile, introduc-

ing UAVs into wireless networks leads to many challenges

such as optimal deployment, flight trajectory design, and

energy efficiency. So far, these challenges have mainly been

addressed in the literature with the objective of either maximiz-

ing network coverage and rate or minimizing delay. In contrast,

the quality-of-service (QoS) for many real-time applications,

e.g., human safety applications, is restricted by the freshness of

information collected by the UAV from the ground nodes [11].

Therefore, in order to preserve the freshness of information

status at the UAV, it is important to design its flight trajectory

as well as carefully schedule information transmissions from

the ground nodes.

Related works. We employ the concept of age-of-

information (AoI) to quantify the freshness of information
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at the UAV. First introduced in [12], AoI is defined as the

time elapsed since the latest received status update packet

at a destination node was generated at the source node.

For a simple queueing-theoretic model, the authors of [12]

characterized the average AoI. Then, the average AoI and

some other age-related metrics were investigated in the lit-

erature for variations of the queueing model considered in

[12] (refer to [13] for a comprehensive survey). Another

line of research [14]–[23] employed AoI as a performance

metric for different communication systems that deal with

time critical information. The main focus of these works was

on applying tools from optimization theory to characterize

age-optimal transmission policies. Note that the destination

node was commonly assumed to be a static node in [12]–

[23]. More recently, in [22] and [23], the authors considered

the optimization of AoI in UAV-assisted wireless networks.

However, the analyses in these works were limited to scenarios

where UAVs acted as relay nodes and are hence not broadly

applicable. Furthermore, these works did not take into account

the optimal scheduling of update packet transmissions from

different nodes while optimizing the UAV’s flight trajectory.

Contributions. The main contribution of this paper is a novel

deep reinforcement learning (RL) framework for optimizing

the UAV’s flight trajectory as well as scheduling status update

packets from ground nodes with the objective of minimizing

the weighted sum-AoI. In particular, we study a UAV-assisted

wireless network, in which a UAV moves towards the ground

nodes to collect status update packets about their observed

processes. For this system setup, we formulate a weighted

sum-AoI minimization problem in which the UAV’s flight

trajectory as well as scheduling of update packet transmissions

are jointly optimized. To obtain the age-optimal policy, the

problem is first modeled as a finite-horizon Markov decision

process (MDP) with finite state and action spaces. Due to the

extreme curse of dimensionality in the state space, the use

of a finite-horizon dynamic programming (DP) algorithm is

computationally impractical. To overcome this challenge, we

propose a deep RL algorithm. After showing the convergence

of our proposed algorithm, we numerically demonstrate its

superiority over two baseline policies, namely, the distance-

based and random walk policies, in terms of the achievable

sum-AoI per process. Several key system design insights are

also provided through extensive numerical results. To the best

of our knowledge, this work is the first to apply tools from

deep RL to characterize the age-optimal policy.

II. SYSTEM MODEL

A. Network Model

Consider a wireless network in which a set M of M ground

nodes are deployed to observe potentially different physical
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Fig. 1: An illustration of our system model.

processes of a certain geographical region. Uplink transmis-

sions are considered, where a UAV collects status update

packets from the nodes while seeking to maintain freshness

of its information status about their observed processes during

the time of its operation. We assume a discrete-time system

in which time is divided into slots of unit length (without

loss of generality) such that each slot n corresponds to the

time duration [n − 1, n). Each ground node m has a battery

with finite capacity Emax,m, which is divided into a finite

number of energy quanta emax,m such that the amount of

energy contained in each energy quantum is Emax,m/emax,m.

Let em(n) ∈ Em,{0, 1, · · · , em,max} denote the battery level

at device m at the beginning of slot n.

As shown in Fig. 1, the geographical region of interest

is partitioned into cells of equal areas where we denote by

Lc,i = (xc,i, yc,i) ∈ C the location of the center of cell i, and C
is the set containing the locations of centers for different cells.

Let xs and ys be the horizontal and vertical spacing distances

between the centers of any two adjacent cells, respectively.

The UAV is assumed to fly at a fixed height h such that the

projection of its flight trajectory on the ground at time slot n
is denoted by Lu(n) ∈ C. In other words, we will discretize

the trajectory of the UAV such that its location is mapped

to a discrete value Lu(n) during time slot n. In practice, the

UAV can only operate for a finite time interval due to its

battery limitations and the need for recharging. We model

this fact by having a time constraint of τ seconds during

which the UAV flies from an initial location Li
u to a final

location Lf
u where it can be recharged to continue its operation.

Note that Li
u and Lf

u are the center locations of the initial

and final cells, respectively, along the UAV’s flight trajectory.

Therefore, the UAV’s flight trajectory is approximated by the

sequence
{

Li
u, · · · , Lu(n), · · · , L

f
u

}

. Similar to [7]–[9], the

channels between the UAV and ground nodes are assumed to

be dominated by the line-of-sight (LoS) links. Therefore, at

time slot n, the channel power gain between the UAV and

ground node m will be:

gu,m(n) = β0d
−2
u,m =

β0

h2 + ‖Lu(n)− Lm‖2
, m ∈ M, (1)

where du,m is the distance between the UAV and node m,

Lm is the location of node m, and β0 is the channel gain at

a reference distance of 1 meter.

The AoI of an arbitrary physical process is defined as the

time elapsed since the most recently received update packet

at the UAV was generated at the ground node observing this

process. Denote by Am(n) ∈ Am , {1, 2, · · · , Amax,m} the

AoI at the UAV for the process observed by node m at the

beginning of time slot n, where Amax,m is the maximum value

that Am(n) can take and can be chosen to be arbitrary large.

B. State and Action Spaces

The state sm(n) of a ground node m at time slot n is

characterized by its battery level and the AoI of its observed

process at the UAV at the beginning of slot n, i.e., sm(n) ,
(em(n), Am(n)) ∈ Em × Am. On the other hand, the state

of the UAV su(n) at slot n is captured by its location, and

the difference between the remaining time and the required

time to reach its final location which is denoted by tu(n) ∈
T , {0, 1, · · · , τ}, i.e., su(n) , (Lu(n), tu(n)) ∈ C × T .

Hence, the system state at slot n can be expressed as s(n) =
(

{sm(n)}m∈M
, su(n)

)

∈ S ,
∏

m∈M
(Em ×Am)× C × T ,

where S is the state space of the system.

We assume that UAV’s maximum allowable speed limits its

movement in each slot to one of the adjacent cells of its current

cell. Hence, in each time slot, the UAV either decides to remain

at its location over the duration of the next slot or move to one

of its adjacent cells. Let v(n) ∈ V , {N,S,E,W, I} be the

movement action of the UAV at slot n, where N,S,W and E
denote the north, south, west and east directions, respectively,

and I indicates that the UAV will remain at its location in the

next slot. Hence, the dynamics of the UAV’s location will be:

Lu(n+ 1) =























Lu(n) + (0, ys), if v(n) = N,
Lu(n)− (0, ys), if v(n) = S,
Lu(n) + (xs, 0), if v(n) = E,
Lu(n)− (xs, 0), if v(n) = W,
Lu(n), otherwise.

(2)

When the UAV is located at one of the boundary cells in

time slot n and v(n) will cause its location to be outside the

considered region in slot n + 1, it will remain at its current

location in slot n+1. Meanwhile, at each slot, the UAV may

choose one of the ground nodes from which it receives an

update packet about its observed process. Let w(n) ∈ W =
{0, 1, · · · ,M} denote the scheduling action for update packet

transmission at slot n, where w(n) = m means that node m is

scheduled to transmit an update packet at slot n, and w(n) = 0
indicates that no update packet transmission occurs at slot n.

Hence, the system action at slot n is a(n) = (v(n), w(n)) ∈
A , V ×W , where A is the action space of the system.

By letting S,B, and σ2 be the size of an update packet,

channel bandwidth, and noise power at the UAV, respectively,

the integer number of energy quanta required to transmit an

update packet from node m is given by:

eTm(n) =

⌈

emax,m

Emax,m
ET

m(n)

⌉

, (3)

where, according to Shannon’s formula and recalling that the

slot length is unity, ET
m(n) can be expressed as:

ET
m(n) =

σ2

gu,m(n)

(

2S/B − 1
)

. (4)

Clearly, when node m is scheduled to transmit an update

packet at slot n, its current battery level em(n) should be at

least equal to eTm(n). The ceiling was used in (3) to obtain

a lower bound on the performance of the continuous system

(when the energy in the battery is expressed by a continuous



variable). On the other hand, if the floor operator replaces the

ceiling one in the definition of eTm(n), an upper bound on the

performance of the continuous system is obtained. Therefore,

the evolution of the battery level at node m is given by

em(n+ 1) =

{

em(n)− eTm(n), if w(n) = m,
em(n), otherwise.

(5)

A generate-at-will policy is employed such that whenever

node m is chosen to transmit an update packet at a certain time

slot, it generates that update packet at the beginning of that

time slot [15], [16]. Therefore, when w(n) = m, the AoI of

its observed process reduces to one; otherwise, the AoI value

increases by one. Hence, the AoI dynamics for the process

observed by node m can be expressed as

Am(n+ 1) =

{

1, if w(n) = m,
min {Amax,m, Am(n) + 1} , otherwise.

(6)

III. DEEP REINFORCEMENT LEARNING FOR WEIGHTED

SUM-AOI MINIMIZATION

A. Problem Formulation

Our goal is to characterize the age-optimal policy which

determines the actions decided at different states of the

system over a finite horizon of length τ . The objective of

this age-optimal policy is to minimize the weighted sum-

AoI. Formally, a policy π = {πn}, n = 1, 2, · · · , τ, is a

sequence of probability measures over the state space S .

Let s(n) = {s(1), a(1), · · · , s(n− 1), a(n− 1), s(n)} denote

the sequence of actions and states up to the state of the

system at slot n. Conditioned on s(n), the probability measure

πn determines the probability of taking action a(n), i.e.,

P
(

a(n) | s(n)
)

. In addition, the policy π is called stationary

when P
(

a(n) | s(n)
)

= P (a(n) | s(n)) , ∀n, and is said to

be deterministic when P
(

a(n) | s(n)
)

= 1 for some a(n) ∈
A(s(n)), where A(s(n)) represents the set of possible actions

at state s(n). Given a policy π, the total expected cost of

the system, over the finite horizon of interest starting from an

initial state s(1), can be expressed as

Gπ
(

s(τ)
)

,

τ
∑

n=1

M
∑

m=1

λmE [Am(n) | s(1)], (7)

where λm is the importance weight of the process observed by

node m and the expectation is taken with respect to the policy.

Our goal is to obtain the optimal policy π⋆ that satisfies

π⋆ = arg min
π

Gπ
(

s(τ)
)

. (8)

Next, we derive the maximum and minimum total expected

costs for identical ground nodes which have equal numbers of

energy quanta, importance weights, and maximum AoI values.

Theorem 1. The maximum and minimum total expected

costs of the system, for a case with identical ground nodes,

Amax,m = Amax ≥ M , and Am(1) = 1, ∀m, are given by:

min
π

Gπ =
(2M + 1)(M − 1)

4
−

M−1
∑

n=1

n2

2M

+
(τ − (M + 1))(M + 1)

2
, (9)
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Fig. 2: The deep RL architecture.

max
π

Gπ =
Amax(Amax − 1)

2
+ (τ − (Amax − 1))Amax.

(10)

Proof: The minimum total expected cost is reached when

the UAV can receive an update packet from the ground node

with maximum current AoI value at every time slot. In this

case, we have:
M
∑

m=1

λmAm(n) =

{

1/M
[

nM − n(n−1)
2

]

, n < M
(M+1)

2 , n ≥ M.
(11)

By summing this value over all time slots, we obtain (9). The

maximum total expected cost is reached when the UAV cannot

receive update packets over all time slots. In this case, we have:
M
∑

m=1

λmAm(n) =

{

n, n < Amax,

Amax, n ≥ Amax.
(12)

Thus, by summing (12) over all time slots, we get (10).

Owing to the nature of evolution of the system state

parameters, represented by (2), (5), and (6), the problem

can be modeled as a finite-horizon MDP with finite state

and action spaces. However, due to the curse of extremely

high dimensionality in S , it is computationally infeasible to

obtain π⋆ using the standard finite-horizon DP algorithm [24].

Motivated by this, we propose a deep RL algorithm for solving

(8) in the next subsection. Deep RL is suitable for this problem

since it can reduce the dimensionality of the large state space

while learning the optimal policy at the same time [25].

B. Deep Reinforcement Learning Algorithm

The proposed deep RL algorithm has two components: (i)

an artificial neural network (ANN), that reduces the dimension

of the state space by extracting its useful features and (ii) an

RL component, which is used to find the best policy based on

the ANN’s extracted features, as shown in Fig. 2.

To derive the policy that minimizes the total expected cost

of the system, we use a Q-learning algorithm [24]. In this algo-

rithm, we define a state-action value function Qπ(s(n), a(n))
which is the expected cost of the system starting at state s(n),
performing action a(n) and following policy π. In Q-learning

algorithm, we try to estimate the Q-function using any policy

that minimizes the future cost. To this end, we use the so-

called Bellman update rule as follows:

Qn+1 (s(n), a(n)) = Qn (s(n), a(n)) + β
(

c(n)

+ γmin
α

Qn (s(n+ 1), α)−Qn (s(n), a(n))
)

, (13)



where c(n) =
∑M

m=1 λmAm(n) represents the instantaneous

cost at slot n, β is the learning rate, and γ is a discount factor.

The discount factor can be set to a value between 0 and 1 if the

UAV’s task is continuing which means the task will never end,

thus the current cost has higher value than the unknown future

cost. However, in our case, we have two terminal cases: 1)

when the UAV reaches the final cell and 2) when the required

time to go to the final cell is less than the remaining time slots

due to the limited available energy of the UAV. Therefore, our

problem is episodic, and hence we set γ = 1.

Since, using (13), the UAV always has an estimate of the

Q-function, it can exploit the learning by taking the action

that minimizes the cost. However, when learning starts, the

UAV does not have confidence on the estimated value of the

Q-function since it may not have visited some of the state-

action pairs. Thus, the UAV has to explore the environment

(all state-action pairs) with some degree. To this end, an ǫ-
greedy approach is used where ǫ is the probability of exploring

the environment at the current state [25], i.e., taking a random

action with some probability. One can reduce the value of ǫ
to 0 as the learning goes on to insure that the UAV chooses

the optimal action rather than explore the environment.

The iterative method in (13) can be applied efficiently for

the case in which the number of states is small. However, in

our problem, the state space is extremely large which makes

such an iterative approach impractical, since it requires a large

memory and will have a slow convergence rate. Also, this

approach cannot be generalized to unobserved states, since the

UAV must visit every state and take every action to update

every state-action pair [24]. Thus, we employ ANNs which

are very effective at extracting features from data points and

summarizing them to smaller dimensions. We use a deep Q
network approach [25] in which the learning steps are the same

as in Q-learning, however, the Q-function is approximated

using an ANN Q(s, a|θ), where θ is the vector containing

the weights of the ANN. In particular, a fully connected (FC)

layer, as in [25], is used to extract abstraction of the state

space. In the FC, every artificial node of a layer is connected

to every artificial node of the next layer via the weight vector

θ. The goal is to find the optimal values for θ such that

the ANN will be as close as possible to the optimal Q-

function. To this end, we define a loss function for any set

of (s(n), a(n), c(n), s(n+ 1)), as follows:

L(θk+1) =
[

c(n) + γmin
α′

Q(s(n+ 1), α′|θk)

−Q(s(n), a(n)|θk+1)
]2

, (14)

where subscript k+1 is the episode at which the weights are

updated. In addition, we use a replay memory that saves the

evaluation of the state, action, and cost of past experiences, i.e.,

past state-actions pairs and their resulting costs. Then, after

every episode, we sample a batch of b past experiences from

the replay memory and we find the gradient of the weights

using this batch as follows:

∇θk+1
L(θk+1) =

[

c(n) + γmin
α′

Q(s(n+ 1), α′|θk)

−Q(s(n), a(n)|θk+1)
]

×∇θk+1
Q(s(n), a(n)|θk+1). (15)

Algorithm 1 Deep RL for weighted sum-AoI minimization

1: Initialize a replay memory that stores the past experiences of the UAV
and an ANN for Q-function. Set k = 1.

2: Repeat:
3: Set n = 1 and observe the initial state s(1).
4: Repeat:

5: Select an action a:
6: select a random action a ∈ A(s(n)) with probability ε ,
7: otherwise select a = arg minα Q(s(n), α|θk).
8: Perform action a.
9: Observe the cost c(n) and the new state s(n+ 1).

10: Store experience {s(n), a(n), c(n), s(n+ 1)} in the replay
memory.

11: n = n+ 1
12: Until s(n+ 1) is a terminal state.
13: Sample b random experiences {̂s(η),â(η),ĉ(η),ŝ(η + 1)}

from the replay memory.
14: Calculate the target value t:
15: If the sampled experience is for η = 1 then t = ĉ(η),
16: Otherwise t = ĉ(η) + γminα′ Q(ŝ(η + 1), α′|θk).
17: Train the network Q using the gradient in (15).
18: k = k + 1.
19: Until convergence to a sum-AoI.

Then, using this loss function, we train the weights of the

ANN. It has been shown that using the batch method and

replay memory improves the convergence of deep RL [25].

Algorithm 1 summarizes the proposed learning algorithm and

Fig. 2 shows the architecture of the deep RL algorithm.

IV. SIMULATION RESULTS

For our simulations, we consider an area in between the

following coordinates: [−50,−50], [−50, 1050], [1050, 1050],
and [1050,−50] meters. We discretize this area into cells of

dimensions 100 meters by 100 meters where the index of every

cell is the coordinate of the cell center divided by 100. For

instance, the cell in between [450, 450], [450, 550], [550, 550],
and [550, 450] meters is called (5, 5) since the center of this

cell is [500, 500] meters. Thus, we will have 11 cells in both

the x and y directions. In addition, we consider B = 1
MHz, S = 20 Mbits, σ2 = −100 dBm, h = 100 meters,

Li
u = [0, 5], Lf

u = [10, 5],
Emax,m

emax,m
= 1 mJ, Amax,m = 50

and λm = 1
M , ∀m ∈ M. In order to train the UAV, we

consider the ANN architecture in [25] with no convolutional

neural networks and only one FC layer with 200 hidden nodes.

We use the Tensorflow-Agents library [26] for designing the

environment, policy, and costs. In addition, we use a single

NVIDIA P100 GPU and 20 Gigabits of memory to train the

UAV. Note that the reported numbers are derived by averaging

the sum-AoI per process over 1000 episodes.

A. Convergence Analysis

To analyze the convergence of the proposed deep RL

algorithm, we illustrate our setup for simulation scenario 1 in

Fig. 3a. In this scenario, we have only one ground node which

is located at (5, 5), (5, 6), . . . , or (5, 10). Also, we have τ = 10
which is the required number of time slots needed to move

directly from the initial cell to the final cell. In addition, we

have emax = 26, which is the number of energy quanta required

to transmit packet from the ground node at cell (5, 10) (the

furthest cell) to the UAV at cell (5, 5).
Fig. 4 shows the convergence of the average sum-AoI per

process (recall that the importance weights are equal) after
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Fig. 3: The initial and final cells, and locations of ground nodes for the five studied scenarios.
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Fig. 4: Convergence of the average sum-AoI in scenario 1.

50,000 training episodes. We can observe that the average

sum-AoI per process is smaller for closer ground nodes to

the straight line between the initial and the final cells. This is

due to the fact that the UAV has to move in a straight line

from the initial cell towards the final cell and, thus, does not

have enough energy to update the status of far away ground

nodes while the closer nodes can be updated several times.

B. Trajectory Optimization

To show the effective trajectory optimization and scheduling

of the UAV, in Fig. 3b, we consider simulation scenario 2

in which there are two ground nodes located at (2, 10) and

(8, 10). Then, we choose emax and τ such that the UAV can

receive only one packet from any of ground nodes when it can

be as close as possible to ground nodes. For instance, when

τ = 16, the UAV will have 6 more time slots than moving

straight from initial cell to final cell. Thus, the UAV can use

the extra 6 slots to go three slots to the North, update ground

nodes and then come back to the straight line. In this case, we

choose emax = 5 which is the required energy to transmit a

packet to a UAV that is located two cells away. Fig. 3b shows

that the proposed deep RL algorithm can optimally find the

best path and scheduling strategy. The cross marker is the

UAV’s location at which it receives a status update packet

from the ground node with an index next to the cross marker.

C. Effects of System Parameters on the Minimum Sum-AoI

To compare the performance of our proposed deep RL

algorithm with other policies, in Fig. 3c, we set up three

scenarios. In scenario 3, we consider three ground nodes

located at (5, 10), (0, 0), and (0, 10), where τ = 100 and

emax varies between 20 and 210 and are equal for all of the

ground nodes. In scenario 4, the locations of ground nodes

are the same as scenario 3 while emax = 100 for all of the

ground nodes and τ varies between 10 and 100. Scenario 5

studies the effect of the spatial density of ground nodes at

the outcome of the optimal policy. To this end, in scenario

5, we have emax = 100 for all ground nodes and τ = 100.

In addition, the location of ground nodes varies from (4, 4),
(5, 6), and (6, 4) (the most dense case) to (0, 0), (5, 10), and

(0, 10) (the least dense case). We compare the deep RL policy

with two baseline policies: 1) a distance-based policy which

updates the status of the closest ground node if the distance

is less than 2 cells and moves closer to the ground node

with the maximum current AoI value, and 2) a random walk

policy which randomly chooses a ground node to update its

status while moving randomly in all directions. The distance-

based policy is heuristically a good policy since it requires

less energy for status update and tries to move closer to

ground nodes with higher AoI to update their status. On the

other hand, the random walk policy always explores all of the

actions, thus, may find some actions that are not trivial but

will result in smaller average AoI.

Fig. 5a shows the effect of emax on the sum-AoI per process

in scenario 3. we can observe that a higher emax results in lower

average sum-AoI per process since the ground nodes can be

updated more frequently and from larger distances. In addition,

we can see that our proposed deep RL policy outperforms

the other baseline policies since it takes into account the

available energy quanta, AoI, the time constraint, and location

of the UAV while the other policies are only distance-based

or completely random. Fig. 5a demonstrates that the distance-

based policy is more effective than the random walk policy

for smaller emax. However, for larger emax, the random walk

policy is more effective since it can explore more state-action

pairs and can update ground nodes from a farther distance. On

the other hand, the distance-based policy stays constant after

emax = 25 because the agent has to satisfy the time constraint,

thus, an increase in emax will not be effective.

Fig. 5b shows the results for scenario 4 in which the effect

of τ on the sum-AoI per process is studied. Two key points

can be deduced from Fig. 5b: 1) the proposed deep RL policy

results in approximately 50% and 75% smaller average sum-

AoI respectively compared to the distance-based policy and

the random walk policy, and 2) for the time constraint smaller

than 50, the random walk policy is more effective. However,

for larger time constraints, we can see that the distance-based

policy has enough time to get closer to ground nodes to update

their status, thus, can outperform the random walk policy.

Fig. 5c shows the effect of the spatial density of ground

nodes on the sum-AoI per process in scenario 5. We can

see from Fig. 5c that the proposed deep RL policy has a
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Fig. 5: Average sum-AoI per process vs.: (a) maximum energy quanta, (b) UAV’s time constraint, and (c) spatial density of ground nodes.

lower average sum-AoI per process compared to the baseline

policies. Fig. 5c also shows that as the spatial density of

ground nodes reduces, i.e., the distance between the ground

nodes increases, the average sum-AoI per process increases.

This is because, for larger distances, the UAV does not have

enough time to get closer to the ground nodes, thus, it has to

receive packets from farther distances and less frequently.

V. CONCLUSION

In this paper, we have investigated the problem of min-

imizing the weighted sum-AoI for a UAV-assisted wireless

network in which a UAV collects status update packets from

energy-constrained ground nodes. We have shown that the

proposed age-optimal policy can jointly optimize the UAV’s

flight trajectory as well as scheduling of status update packets

from the ground nodes. We have then developed a deep RL al-

gorithm to characterize the age-optimal policy that overcomes

the curse of dimenstionality of the original MDP. We have

shown that the deep RL algorithm significantly outperforms

baseline policies such as the distance-based and random walk

policies, in terms of the achievable sum-AoI per process.

Numerical results have demonstrated that the achievable sum-

AoI per process by the proposed algorithm is monotonically

increasing (monotonically decreasing) with the time constraint

of the UAV and spatial density of the ground nodes (the battery

sizes of the ground nodes).
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